A remark on hyperbolic integrodifferential equations
نویسندگان
چکیده
منابع مشابه
Hyperbolic singular perturbations for integrodifferential equations
We study the convergence of solutions of * Co E-m (T.-J. X 0096-3 doi:10. e2u00ðt; eÞ þ u0ðt; eÞ 1⁄4 ðeAþ BÞuðt; eÞ þ R t 0 Kðt sÞðeAþ BÞuðs; eÞds þf ðt; eÞ; tP 0; uð0; eÞ 1⁄4 u0ðeÞ; u0ð0; eÞ 1⁄4 u1ðeÞ; 8< : to solutions of w0ðtÞ 1⁄4 BwðtÞ þ R t 0 Kðt sÞBwðsÞdsþ f ðtÞ; tP 0; wð0Þ 1⁄4 w0; when e ! 0. Here A and B are linear unbounded operators in a Banach space X , KðtÞ is a linear bounded opera...
متن کاملConvergence for Hyperbolic Singular Perturbation of Integrodifferential Equations
By virtue of an operator-theoretical approach, we deal with hyperbolic singular perturbation problems for integrodifferential equations. New convergence theorems for such singular perturbation problems are obtained, which generalize some previous results by This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, an...
متن کاملA Remark on Nonlinear Dirac Equations
For a n-dimensional spin manifold M with a fixed spin structure and a spinor bundle ΣM , we prove an -regularity theorem for weak solutions to the nonlinear Dirac equation of cubic nonlinearity. This, in particular, answers a regularity question raised by Chen-Jost-Wang [5] when n = 2.
متن کاملNonlinear Neutral Integrodifferential Equations on Unbounded Intervals
Abstract In this paper we prove the existence of solutions for a boundary value nonlinear neutral integrodifferential problem in Rn defined on an unbounded interval. The result is obtained by using the Schaefer fixed point theorem and by using a recent result [4] on compactness of a continuous operator K : BC(I,Rn) → BC(I,Rn); here BC(I,Rn) is the Banach space of continuous functions from the (...
متن کاملA Singular Perturbation Problem in Integrodifferential Equations
Consider the singular perturbation problem for εu(t; ε) + u(t; ε) = Au(t; ε) + ∫ t 0 K(t− s)Au(s; ε) ds+ f(t; ε) , where t ≥ 0, u(0; ε) = u0(ε), u (0; ε) = u1(ε), and w(t) = Aw(t) + ∫ t 0 K(t− s)Aw(s)ds+ f(t) , t ≥ 0 , w(0) = w0 , in a Banach space X when ε → 0. Here A is the generator of a strongly continuous cosine family and a strongly continuous semigroup, and K(t) is a bounded linear opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1977
ISSN: 0022-0396
DOI: 10.1016/0022-0396(77)90169-3